
Twister: A Runtime for Iterative MapReduce
Jaliya Ekanayake1,2, Hui Li1,2, Bingjing Zhang1,2, Thilina Gunarathne1,2, Seung-Hee Bae1,2,

Judy Qiu2, Geoffrey Fox1,2
1School of Informatics and Computing, 2Pervasive Technology Institute

Indiana University Bloomington
{jekanaya, lihui, zhangbj, tgunarat, sebae, xqiu,gcf}@indiana.edu

processing runtimes in which the scheduling decisions are made
mainly based on the availability of the computation resources,
MapReduce takes a more data centered approach supporting the
concept of “moving computations to data”. There are many
published work including some of ours [3-6], showing the
applicability of MapReduce programming model to various
data/compute intensive applications.

Classic parallel applications developed using message passing
runtimes such as MPI[7] and PVM[8] utilize a rich set of
communication and synchronization constructs offered by these
runtimes to create diverse communication topologies. In contrast,
MapReduce and similar high-level programming models support
simple communication topologies and synchronization constructs.
Although this limits their applicability to the diverse classes of
parallel algorithms, in our previous papers [3-6] we have shown
that one can implement many data/compute intensive applications
using these high level programming models. When the volume of
the data is large, algorithms based on simple communication
topologies may produce comparable performances to the
algorithms with tight synchronization constraints. These
observations also favor MapReduce since its relaxed
synchronization constraints do not impose much of an overhead
for large data analysis tasks. Furthermore, the simplicity and
robustness of these programming models supersede the additional
overheads.

When analyzing a range of applications for which the MapReduce
can be especially effective, we noticed that by supporting iterative
MapReduce computations we can expand its applicability to more
fields such as data clustering, machine learning, and computer
vision where many iterative algorithms are common. In these
algorithms, MapReduce is used to handle the parallelism while the
repetitive application of it completes the iterations. Cheng Tao et
al. also demonstrated ways of applying MapReduce to iterative
machine learning algorithms[9].

There are some existing implementations of MapReduce such as
Hadoop[10] and Sphere[11] most of which adopt the initial
programming model and the architecture presented by Google.
These architectures focus on performing single step MapReduce
(computations that involve only one application of MapReduce)
with better fault tolerance, and therefore store most of the data
outputs to some form of file system throughout the computation.
Furthermore, in these runtimes, the repetitive application of
MapReduce creates new map/reduce tasks in each iteration
loading or accessing any static data repetitively. Although these
features can be justified for single step MapReduce computations,
they introduce considerable performance overheads for many
iterative applications.

Twister[12] is an enhanced MapReduce runtime with an extended
programming model that supports iterative MapReduce
computations efficiently. It uses a publish/subscribe messaging

ABSTRACT
MapReduce programming model has simplified the
implementation of many data parallel applications. The simplicity
of the programming model and the quality of services provided by
many implementations of MapReduce attract a lot of enthusiasm
among distributed computing communities. From the years of
experience in applying MapReduce to various scientific
applications we identified a set of extensions to the programming
model and improvements to its architecture that will expand the
applicability of MapReduce to more classes of applications. In
this paper, we present the programming model and the
architecture of Twister an enhanced MapReduce runtime that
supports iterative MapReduce computations efficiently. We also
show performance comparisons of Twister with other similar
runtimes such as Hadoop and DryadLINQ for large scale data
parallel applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming -
Distributed programming, Parallel Programming.

General Terms
Algorithms, Performance, Languages

Keywords
MapReduce, Cloud Technologies, Iterative Algorithms.

1. INTRODUCTION
The data deluge is experiencing in many domains, and in some
domains such as astronomy, particle physics and information
retrieval, the volumes of data are already in peta-scale. The
increase in the volume of data also increases the amount of
computing power necessary to transform the raw data into
meaningful information. In many such situations, the required
processing power far exceeds the processing capabilities of
individual computers, mandating the use of parallel/distributed
computing strategies. These demanding requirements have led to
the development of new programming models and
implementations such as MapReduce[1] and Dryad[2].

MapReduce programming model has attracted a great deal of
enthusiasm because of its simplicity and the improved quality of
services that can be provided. Unlike the classical distributed

810

infrastructure for communication and data transfers, and supports
long running map/reduce tasks, which can be used in “configure
once and use many times” approach. In addition it provides
programming extensions to MapReduce with “broadcast” and
“scatter” type data transfers. These improvements allow Twister
to support iterative MapReduce computations highly efficiently
compared to other MapReduce runtimes. We have published some
of the preliminary results obtained during the development of
Twister in few other publications [3-6]. In this paper, we discuss
the extended MapReduce programming model and the
architecture of Twister in detail. We also present some of the new
applications that we have developed and their performances.

In the sections that follow, we first give an overview of the
MapReduce programming model and the architecture used by
most of the MapReduce runtimes. Section 3 introduces Twister
programming model comparing it with the typical MapReduce
followed by its architecture in section 4. In section 5, we present a
set of applications that we have developed using Twister and
provide a performance analysis comparing Twister with other
parallel/distributed runtimes such as Hadoop, and DryadLINQ
[13]. We discuss the related work to Twister in section 6, and in
the final section we draw our conclusions and outline future
works.

2. MAPREDUCE
2.1 Programming Model
MapReduce is a distributed programming technique proposed by
Google for large-scale data processing in distributed computing
environments. According to Jeffrey Dean and Sanjay Ghemawat,
the input for MapReduce computation is a list of (key,value) pairs
and each map function produces zero or more intermediate
(key,value) pairs by consuming one input (key,value) pair. The
runtime groups the intermediate (key,value) pairs based on some
mechanism like hashing into buckets representing reduce tasks.
The reduce tasks take an intermediate key and a list of values as
input and produce zero or more output results [1].

Furthermore, because of its functional programming inheritance
MapReduce requires both map and reduce tasks to be “side-effect-
free”. Typically, the map tasks start with a data partition and the
reduce task performs operations such as “aggregation” or
“summation”. To support these, MapReduce also requires that the
operations performed at the reduce task to be both “associative”
and “commutative”. These are common requirements for general
reductions. For example, in MPI the default operations or the user
defined operations in MPI_Reduce or MPI_Allreduce are also
required to be associative and may also be commutative.

2.2 Architectures
Along with the MapReduce programming model, Jeffrey Dean
and Sanjay Ghemawat describe in their paper the architecture that
they adopted at Google. Many of their decisions are based on the
scale of the problems that they solve using MapReduce and the
characteristics of the large computing infrastructure in which
these applications are deployed. Apache Hadoop and several other
MapReduce runtimes such as Disco [14] and Sector/Sphere also
adopt most of these architectural decisions. Below we will list
some of the most important characteristics of their runtime as it
will be useful to explain and compare the architectural decisions
we made in Twister later.

2.2.1 Handling Input and Output Data
Both Google and Hadoop utilize distributed fault-tolerance file
systems, GFS[15] and HDFS[10], in their MapReduce runtimes.
These file systems use the local disks of the computation nodes to
create a distributed file system, which can be used to co-locate
data and computation. They also provide a large disk bandwidth to
read input data. Both runtimes use the distributed file systems to
read the input data and store output results. Moreover, these file
systems are built-in with data duplication strategies so that they
can recover from failures of individual local disks in data/compute
nodes. (Note: in MapReduce domain a “node” typically refers to a
computer that is used for both storing data and also for
computation. Throughout the paper we also use the term node to
refer such a computer).

2.2.2 Handling Intermediate Data
In most MapReduce runtimes the intermediate data produced after
the map stage of the computation is first stored in local disks of
the nodes where they are produced. Then the master scheduler
assign these outputs to reduce workers, which will then retrieve
the data via some communication protocol such as HTTP and later
execute the reduce functions. This approach greatly simplifies the
handling of failures in the runtime. However, it also adds a
considerable performance overhead to the overall computation for
some applications.

2.2.3 Scheduling Tasks
Google’s MapReduce and Hadoop use a dynamic scheduling
mechanism. In this approach, the runtime assigns map/reduce
tasks to the available computation resources simplifying the
optimal utilization of heterogeneous computational resources
while the initial assignment of map tasks is performed based on
the data locality. This approach also provides an automatic load
balancing for map tasks with skewed data or computational
distributions.

2.2.4 Fault Tolerance
Handling failures is one of the key considerations in Google’s
MapReduce architecture. Their approach of writing every data
product to persistent storage simplifies the failure handling logic.
In both Google and Hadoop MapReduce, the distributed file
systems handle the failures of the disks or nodes using data
replication. A failure of a map task is handled by rerunning the
failed task while a failure of reduce task requires downloading the
outputs of map tasks and re-execution of the reduce task. The
master process that handles the scheduling and keeps track of the
overall computation is assumed to run on a node that is less
susceptible to failures. A failure in this node requires restarting of
the overall runtime.

3. ITERATIVE MAPREDUCE WITH
TWISTER
There are many parallel algorithms with simple iterative
structures. Most of them can be found in the domains such as data
clustering, dimension reduction, link analysis, machine learning,
and computer vision. K-Means[16], Deterministic Annealing
Clustering[17], pagerank[18], and dimension reduction algorithms
such as SMACOF[19] are all examples of such algorithms. When
analyzing algorithms like above, we noticed that the parallel
sections of such algorithms can easily be implemented as
MapReduce computations so that the overall computation
becomes an iterative MapReduce computation.

811

Further analysis revealed some of the interesting characteristics
such as; they utilize two types of data products – static and
dynamic, use many iterations until convergence, some requires
reduce output as a whole to make the decision to continue or stop
iterations. These features demand an extended MapReduce
programming model and an efficient runtime implementation,
which we try to provide in Twister. In the following section, we
discuss the programming extensions we support in Twister in
more detail. Figure 1 shows the extended programming model.

3.1 Static vs. Variable Data
Many iterative applications we analyzed show a common
characteristic of operating on two types of data products called
static and variable data. Static data (most of the time the largest of
the two) is used in each iteration and remain fixed throughout the
computation whereas the variable data is the computed results in
each iteration and typically consumed in the next iteration in
many expectation maximization (EM) type algorithms. For
example, if we consider K-means clustering algorithm[16], during
the nth iteration the program uses the input data set and the cluster
centers computed during the (n-1)th iteration to compute the next
set of cluster centers. To support map/reduce tasks operating with
these two types of data products we introduced a “configure”
phase for map and reduce tasks, which can be used to load (read)
any static data at the map and reduce tasks. For example, the
typical map phase of the computation then consumes the variable
data specified as (key, value) pairs and the static data (already
loaded) producing a set of output (key, value) pairs.

Figure 1. Iterative MapReduce programming model
supported by Twister.

3.2 Long Running Map/Reduce Tasks
The above programming extension adds capabilities of handling
both static and variable data in map/reduce tasks. However,
reading static data in each execution of the MapReduce
computation is highly inefficient. Although some of the typical
MapReduce computations such as information retrieval consume
very large data sets, many iterative applications we encounter
operate on moderately sized data sets that can fit into the
distributed memory of the computation infrastructure. This
observation led us to explore the idea of using long-running
map/reduce tasks similar to the parallel processes in many MPI
applications that last throughout the life of the computation. The
long running (cacheable) map/reduce tasks eliminates the
necessity of reloading static data in each iteration. Current
MapReduce implementations such as Hadoop and DryadLINQ do

not support this behavior and hence they initiate new map/reduce
tasks and load static data in each iteration incurring considerable
performance overheads for iterative MapReduce computations.
Although rare among iterative applications, one can use Twister
with extremely large data sets that cannot be fit into the
distributed memory of the computation infrastructure by reading
data directly from the disks without loading them to memory.

3.3 Granularity of Tasks
The applications presented in the Google’s MapReduce paper[1]
used fine grained map tasks. For example, in word count
application, the map tasks simply produce (word, 1) pairs for each
word it encounter. However, for many applications we noticed
that by increasing the granularity of the map task one can reduce
the volume of the intermediate data. In the above example, instead
of sending (word, 1) for every word, the map task can produce
partial sums such as (word, n). With the option of configurable
map tasks, the map task can access large blocks of data/or files. In
Twister, we adopt this approach in many of our data analysis
applications to minimize the intermediate data volumes and to
allocate more computation weight to map stage of the
computation. Hadoop uses an intermediate combiner operation
just after the map stage of the computation to support similar
behavior.

3.4 Side-effect-free Programming
At first glance the concept of long-running map/reduce tasks
seems to violate the “side-effect-free” nature of MapReduce
allowing users to store state information in map/reduce tasks.
However, in the case of a failure, Twister programming model
only guarantees the restoring of static configurations such as data
that can be reloaded using a data partition or static parameters
shared from the main program. Any transient information stored
in map/reduce tasks will be lost. Therefore the users of the
Twister runtime can chose to use the fault tolerance capabilities
by storing only the static configurations in long running
map/reduce tasks or use the long running tasks to develop
MapReduce applications with transient states stored in them (i.e.
with side effects) without the fault tolerance capabilities.

3.5 Combine Operation
In Google’s MapReduce architecture the outputs of the reduce
tasks are stored in the distributed file system (GFS) in separate
files. However, most iterative MapReduce computations require
accessing the “combined” output of the reduce tasks to determine
whether to proceed with another iteration or not. In Twister we
have introduced a new phase to MapReduce named “Combine”
that acts as another level of reduction (Note: this is different to the
local combine operation that runs just after the map tasks in
Hadoop). One can use the combine operation to produce a
collective output from all the reduce outputs.

3.6 Programming Extensions
We have also incorporated a set of programming extensions to
MapReduce in Twister. One of the very useful extensions is
mapReduceBCast(Value value). As the name implies this
extension facilitates sending a single Value (Note: MapReduce
uses (key,value) pairs) to all map tasks. For example, the “Value”
can be a set of parameters, a resource (file or executable) name, or
even a block of data. Apart from the above, the “configure” option
described in section 3.1 is supported in Twister multiple ways.
Map tasks can be configured using a “partition-file” – a file
containing the meta-data about data partitions and their locations.
In addition one can configure map/reduce tasks from a set of

812

values. For example configureMaps(Value[]values)
and configureReduce(Value[]values) are two
programming extensions that Twister provides. Twister also
provides broadcast style operation between map and reduce
phases allowing it to support complex parallel algorithms. We will
discuss how these extensions are supported in the coming section.

4. TWISTER ARCHITECTURE
Twister is a distributed in-memory MapReduce runtime optimized
for iterative MapReduce computations. It reads data from local
disks of the worker nodes and handles the intermediate data in
distributed memory of the worker nodes. All communication and
data transfers are performed via a publish/subscribe messaging
infrastructure. Figure 2 shows the architecture of the Twister
runtime. (Note: we will simply use the term “broker network” to
refer to the messaging infrastructure throughout the discussion).
Twister architecture comprises of three main entities; (i) client
side driver (Twister Driver) that drives the entire MapReduce
computation, (ii) Twister Daemon running on every worker node,
and (iii) the broker network. During the initialization of the
runtime, Twister starts a daemon process in each worker node,
which then establishes a connection with the broker network to
receive commands and data. The daemon is responsible for
managing map/reduce tasks assigned to it, maintaining a worker
pool to execute map and reduce tasks, notifying status, and finally
responding to control events. The client side driver provides the
programming API to the user and converts these Twister API calls
to control commands and input data messages sent to the daemons
running on worker nodes via the broker network.

Figure 2. Architecture of Twister.
Twister uses a publish/subscribe messaging infrastructure to
handle four types of communication needs; (i) sending/receiving
control events, (ii) send data from the client side driver to the
Twister daemons, (iii) intermediate data transfer between map and
reduce tasks, and (iv) send the outputs of the reduce tasks back to
the client side driver to invoke the combine operation. Currently,
it supports NaradaBrokering[20] and ActiveMQ[21] messaging
infrastructures. However, Twister architecture clearly separates
the communication logics from the implementation of the other
components so that it is straightforward to use other messaging
infrastructures such as those are based on persistent queues.

4.1 Handling Input and Output Data
Twister provides two mechanisms to access input data for map
tasks; (i) read data from the local disks of worker nodes and (ii)

receive data directly via the broker network. The first option
allows twister to start MapReduce computations using large data
sets spread across the worker nodes of the computing
infrastructure. Twister assumes that the data read from the local
disks are maintained as files and hence supports file based input
format, which simplifies the implementation of the runtime. The
use of the native files allows twister to pass data files directly to
any executable (may be a script running as a map or reduce
computation) as command line arguments - a feature not possible
with file systems such as HDFS. A possible disadvantage of this
approach is that it does require the user to break up large data sets
into multiple files.
The meta-data regarding the input file distribution across the
worker nodes is read from a file called “partition-file”. Currently,
the partition file contains a list of tuples consisting of file_id,
node_id, file_path,replication_no fields in them. The concept of
the partition-file in Twister is inspired by the DryadLINQ’s
partitioned-file mechanism. Twister provides a tool to perform
typical file system operations across the worker nodes such as (i)
create directories, (ii) delete directories, (iii) distribute input files
across worker nodes, (iv) copy a set of resources/input files to all
worker nodes, (v) collect output files from the worker nodes to a
given location, and (vi) create partition-file for a given set of data
that is distributed across the worker nodes. Although these
features do not provide the full capabilities that one can achieve
via a distributed file system such as GFS or HDFS, the above
services try to capture the key requirements of running
MapReduce computations using the data read from local disks to
support the concept of “moving computation to data”. Integrating
a distributed file system such as HDFS or Sector [11] with Twister
is an interesting future work.
Twister also supports sending input data for map task directly via
the broker network as well. It will be inefficient to send large
volumes of input data via the broker network for map tasks.
However, this approach is very useful to send small variable data
(Note: please refer to the discussion of static vs. variable data in
section 3.1) to map tasks. For example, a set of parameters, set of
rows of a matrix, a set of cluster centers are all such data items.

4.2 Handling Intermediate Data
To achieve better performance, Twister handles the intermediate
data in the distributed memory of the worker nodes. The results of
the map tasks are directly pushed via the broker network to the
appropriate reduce tasks where they get buffered until the
execution of the reduce computation. Therefore, Twister assumes
that the intermediate data produced after the map stage of the
computation will fit in to the distributed memory. To support
scenarios with large intermediate results, one can extend the
Twister runtime to store the reduce inputs in local disks instead of
buffering in memory.

4.3 Use of Pub/Sub Messaging
The use of publish/subscribe messaging infrastructure improves
the efficiency of Twister runtime. However, to make the runtime
scalable the communication infrastructure should also be scalable.
NaradaBrokering messaging infrastructure we used in Twister can
be configured as a broker network (as shown in figure 2), so that
the Twister daemons can connect to different brokers in the
network reducing the load on a given broker. This is especially
useful when the application uses mapReduceBcast() with
large data sets. A benchmark performed using 624 Twister
daemons revealed that by using 5 brokers (connected
hierarchically with 1 root broker and 4 leaf brokers) rather than 1

813

broker can improve the broadcast time by 4 folds for 20MB
messages.

4.4 Scheduling Tasks
The cacheable map/reduce tasks used in Twister are only
beneficial if the cached locations remain fixed. Therefore, Twister
schedules map/reduce tasks statically. However, in an event of
failure of worker nodes, it will reschedule the computation on
different set of nodes. The static scheduling may lead to un-
optimized resource utilization with skewed input data or execution
times of the map tasks. However, one can minimize this effect by
randomizing the input data assignment to the map tasks.

4.5 Fault Tolerance
Twister provides fault tolerance for iterative MapReduce
computations. Our approach is to save the application state of the
computation between iterations so that in the case of a failure the
entire computation can be rolled back few iterations. Supporting
individual map or reduce failures require adopting an architecture
similar to Google, which will eliminate most of the efficiencies
that we have gained using Twister for iterative MapReduce
computations. Therefore, we decided to provide fault tolerance
support only for iterative MapReduce computations in Twister
based on the following three assumptions: (i) Similar to Google
and Hadoop implementations, we also assume that the master
node failures are rare and hence provide no support for master
node failures and (ii) the communication infrastructure can be
made fault tolerance independent of the Twister runtime, and (iii)
the data is replicated among the nodes of the computation
infrastructure. Based on these assumptions we try to handle
failures of map/reduce tasks, daemons, and worker nodes failures.

The combine operation is an implicit global barrier in iterative
MapReduce computations. This feature simplifies the amount of
state Twister need to remember in case of a failure to recover. To
enable fault tolerance Twister saves the configurations
(information about the static data) used to configure map/reduce
tasks before starting the MapReduce iterations. Then it also saves
the input data (if any) that is sent directly from the main program
to the map tasks. In case of a failure Twister simply re-configures
map/reduce tasks using the available resources scheduling them
based on the data locality, and restart the computation from the
last saved state. If there are no replications of a particular data
partition available among the remaining computation nodes the
recovery operation will terminate.

5. APPLICATIONS AND PERFORMANCES
We have implemented a series of MapReduce applications using
Twister, and the details of some of these applications have been
presented in our previous publications [4-6]. Here we will
describe some new applications that we have developed using
Twister and provide a performance comparison with other
MapReduce runtimes such as Hadoop and DryadLINQ. For
performance analysis we used two computation clusters as
follows.

Table 1. Details of the computation clusters used.
Cluster ID Cluster-I Cluster-II
nodes 32 230

CPUs in each node 6 2

Cores in each CPU 8 4

Total CPU cores 768 1840

CPU Intel(R) Xeon(R)
E7450 2.40GHz

Intel(R) Xeon(R)
E5410 2.33GHz

Memory Per Node 48GB 16GB

Network Gigabit Gigabit

Cluster-I can be booted in to both Linux (Red Hat Enterprise
Linux Server release 5.4 -64 bit) and Windows (Windows Server
2008 -64 bit) while the Cluster-II runs Red Hat Enterprise Linux
Server release 5.4 -64 bit operating system. We use the academic
release of DryadLINQ, Apache Hadoop version 0.20.2, and
Twister for our performance comparisons. Both Twister and
Hadoop use JDK (64 bit) version 1.6.0_18, while DryadLINQ and
MPI uses Microsoft .NET version 3.5.

5.1 Pairwise Distance Calculation
Calculating similarity or dissimilarity between each element of a
data set with each element in another data set is a common
problem and is generally known as an All-pairs[22] problem. The
application we have selected calculates the Smith Waterman
Gotoh(SW-G)[23] distance (say 𝛿𝛿𝑖𝑖𝑖𝑖 –distance between gene i and
gene j) between each pair of genes in a given gene collection.

We mapped the above application to the MapReduce
programming model by adopting a coarse grain task
decomposition approach. To clarify our algorithm, let’s consider
an example where N gene sequences produces a pairwise distance
matrix of size NxN. We decompose the computation task by
considering the resultant matrix and group the overall
computation into a block matrix of size DxD. Due to the
symmetry of the distances 𝛿𝛿𝑖𝑖𝑖𝑖 and 𝛿𝛿𝑖𝑖𝑖𝑖 we only calculate the
distances in the blocks of the upper triangle of the block matrix as
shown in Figure 3 . The blocks in the upper triangle are used as
the values for map tasks along with the block coordinates as the
keys. Once maps calculate the SW-G distance for a given block, it
will emit two copies of the resulting matrix of distances
corresponding to the results for the current block (i,j) and the
block (j,i) due to symmetry. The block (j,i) is marked to read as a
transpose matrix. The row number of a given block is used as the
input key for the reduce tasks, which simply collect the data
blocks corresponding to a row and write to output files after
organizing them in their correct order. At the end of the
computation all the blocks corresponding to a single row block
will be written to a data file by the reduce tasks. We have
developed three implementations of the same application using
Twister, Hadoop, and DryadLINQ runtimes. In both Hadoop and
Twister programs the calculation of the SW-G distance is done
using the JAligner[24] program, a java implementation of the
NAligner[24] program which we have used in DryadLINQ. More
information about these implementations can be found in [25].

Figure 3. Twister implementation of the SW-G distance
calculation program.

814

SW-G distance calculation is a typical MapReduce computation
similar to the “word-count” or “grep” applications. However,
unlike those synthetic applications, the SW-G performs
considerable amount of computation at the map task and transfer a
large matrix as the intermediate results between map and reduce
phases. We use this application to demonstrate the ability of
Twister to support typical MapReduce computations although the
runtime is optimized for iterative MapReduce computations. A
High Energy Physics data analysis that belongs to the same class
of applications was explained in our previous work[4].

We identified samples of the human and Chimpanzee Alu gene
sequences using Repeatmasker[26] with Repbase Update [27] and
produced a data set of 50000 genes replicating a random sample
of 10000 genes from the original data. We used this data set to
measure parallel performance of DryadLINQ, Hadoop, and
Twister runtimes. Figure 4 shows the parallel efficiency (η) of
each runtime under varying data sizes calculated using the
following formula in which p is the number of parallel units, T(p)
is the running time with p parallel units, and T(1) is the sequential
running time.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝑖𝑖𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸 (η) =
T(1)

p. T(p) (1)

Figure 4. Parallel Efficiency of the different parallel runtimes
for the SW-G program (Using 744 CPU cores in Cluster-I).

For the above calculation, we estimated the serial running time by
simply summing up the times spent on each map and reduce tasks.
The results clearly show that all three runtimes achieve maximum
efficiencies and maintains them with the increase of data.
Although the absolute efficiency is not correctly reflected by the
estimated serial time, it provides a valuable base point for our
comparisons. Since this is a typical MapReduce computation, we
expect all runtimes to achieve higher absolute efficiencies.
Twister outperforms Hadoop, because of its faster data
communication mechanism, and the lower overhead in the static
task scheduling. Moreover, in Hadoop each map/reduce task is
executed as separate process (Java Virtual Machine - JVM) where
as Twister uses a hybrid approach in which the map/reduce tasks
assigned to a given daemon is executed within one JVM. The
Lower efficiency in DryadLINQ was mainly due to an inefficient
task scheduling mechanism used in the initial academic release[3].

To evaluate the scalability of the Twister runtime further, we
performed another benchmark using 1632 CPU cores of Cluster-
II. In this evaluation, the Twister runtime is configured to use a
daemon in each CPU core simulating a cluster of 1632 single core
nodes. The efficiencies calculated for this evolution shows a value
of 79% indicating that the runtime is scalable to such number of
nodes. These results also prove that Twister is capable of running

typical MapReduce computations although we have added
enhancements focusing on iterative MapReduce computations.

5.2 Multidimensional Scaling
Multidimensional scaling (MDS) is a general term for the
techniques to configure low dimensional mappings of given high-
dimensional data with respect to the pairwise proximity
information, while the pairwise Euclidean distance within the
target dimension of each pair is approximated to the
corresponding original proximity value. In other words, it is a
non-linear optimization problem to find low-dimensional
configuration which minimizes the objective function, called
STRESS[28] or SSTRESS [29].

Among many MDS solutions, we are using a well-known EM-like
method called SMACOF (Scaling by Majorizing of COmplicated
Function)[19] in this paper. SMACOF is based on iterative
majorization approach and is calculated by iterative matrix
multiplication. For the stop condition, SMACOF algorithm
measures the STRESS value of current mapping and compare to
the STRESS value of the previous mapping result. If the
difference of STRESS value between previous one and the current
one is smaller than threshold value, then it stops iteration. For
details of the SMACOF algorithm, please refer to[30].

We implemented the above algorithm using Twister and evaluated
its performance and scalability characteristic. As we have shown
in [3, 4] both Hadoop and DryadLINQ showed extremely high
overheads for iterative applications such as K-Means clustering or
matrix multiplication. The MDS uses three MapReduce
computations in a single iteration involving two matrix- vector
multiplications and one STRESS calculation. Thus we expect both
Hadoop and DryadLINQ to be highly inefficient for this
application and hence did not implement MDS using those
runtimes. To evaluate the performance of our implementation, we
used a data set comprising of 35339 genes producing 1.24 billion
pair-wise distances. Estimating the serial running time for MDS
application is not straightforward and hence we calculated the
parallel efficiency using the formula (2) below in which α = p1/p2
and p2 is the smallest number of CPU cores for the experiment, so
alpha ≥ 1. This will calculate the parallel efficiency with respect
to the minimum number of CPU cores used for the experiment.
The outcome of this benchmark is shown in Figure 5.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝑖𝑖𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸 (η) =
T(p2)
α. T(p1) (2)

Figure 5. Efficiency of the MDS application (in Cluster–II).
For the selected data set, Twister maintains higher efficiencies
(>80%) for considerable number of CPU cores. With large data,

815

we expect it to maintain similar efficiencies for even higher
number of CPU cores.

5.3 Pagerank
PageRank algorithm calculates numerical value to each web page
in World Wide Web, which reflects the probability that the
random surfer will access that page. The process of PageRank can
be understood as a Markov Chain which needs recursive
calculation to converge. An iteration of the algorithm calculates
the new access probability for each web page based on values
calculated in the previous computation. The iterating will not stop
until the difference (δ) is less than a predefined threshold, where δ
is the vector distance between the page access probabilities in Nth
iteration and those in (N+1)th iteration.
There already exist many published work optimizing PageRank
algorithm, like some of them accelerate computation by exploring
the block structure of hyperlinks[31, 32]. In this paper we do not
create any new PageRank algorithm, but implement the most
general RageRank algorithm [33] with MapReduce programming
model on Twister system. The web graph is stored as an
adjacency matrix (AM) and is partitioned to use as static data in
map tasks. The variable input of map task is the initial page rank
score. The output of reduce task is the input for the map task in
the next iteration.
By leveraging the features of Twister, we did several
optimizations of PageRank so as to extend it to larger web graphs;
(i) configure the adjacency matrix as a static input data on each
compute node and (ii) used the broadcast feature to send input
data (variable data) the map tasks. Further optimizations that are
independent of Twister include; (i) increase the map task
granularity by wrapping certain number of URLs entries together
and (ii) merge all the tangling nodes as one node to save the
communication and computation cost.
We investigated Twister PageRank performance using ClueWeb
data set [34] collected in January 2009. We built the adjacency
matrix using this data set and tested the page rank application
using 32 computer nodes of Cluster-II. Table 2 summarizes the
characteristic of three ClueWeb data sets we used in our tests.

Table 2. Characteristics of data sets (B stands for Billions)
ClueWeb data set CWDS1 CWDS3 CWDS5

Number of AM partitions 4000 2400 800

Number of web pages 49.5M 31.2M 11.7M
Number of links 1.40B 0.83B 0.27B

Average out-degree 28.3 26.8 22.9

Figure 6. Total running rime for 20 iterations of the Pagerank
implementation (Using 256 CPU cores in Cluster-II).

Figure 6 shows the scalability of the pagerank application under
different data sizes. We also calculated the efficiency of the
PageRank application using formula (2) above with p1 and p2
times are taken from runs on 128 and 256 CPU cores respectively
for the CWDS3 data set. The results revealed that the Twister
version of the application can maintain above 80% efficiency at
256 CPU cores as well.

6. RELATED WORK
MapReduce simplifies the programming of many pleasingly
parallel applications. Currently, there are several MapReduce
implementations available based on the Google’s MapReduce
architecture and some of which have improvements/features over
the initial MapReduce model proposed by Google. However for
our knowledge there are no other implementations that support
features such as long running map/reduce tasks or the MapReduce
extensions to support iterative MapReduce computations
efficiently for large-scale data analysis applications as in Twister.
The paper presented by Cheng-Tao et al. discusses their
experience in developing a MapReduce implementation for multi-
core machines[9]. They used the MapReduce runtime to
implement several machine learning algorithms showing that
MapReduce is especially effective for many algorithms that can
be expressible in certain “summation form”. Phoenix runtime,
presented by Colby Ranger et al., is a MapReduce implementation
for multi-core systems and multiprocessor systems [35]. The
evaluations used by Ranger et al. comprises of typical use cases
found in Google's MapReduce paper such as word count, reverse
index and also iterative computations such as Kmeans. Some of
our design decisions in Twister were inspired by the benefits
obtained in these shared memory runtimes. For example, in the
above runtimes the data transfer simply requires sharing memory
references, in Twister we use distributed memory transfers using
pub/sub messaging. Sending some data value to all map tasks is a
trivial operation with shared memory, in Twister we introduced
mapReduceBcast() to handle such requirements.

Sphere[11] is a parallel runtime that operates on Sector[11]
distributed file system. Sector is similar to HDFS in functionality;
however it expects the data to be stored as files and leaves the data
splitting for the users to manage. Unlike map/reduce Sphere
executes user defined functions on these data splits. The authors
show that it can also be used to execute MapReduce style
computations as well. However we noticed that their approach
requires more user involvement in managing the computations.
Supporting MapReduce in various programming languages is a
motivation in many map reduce runtimes such as Disco, Qizmt,
and Skynet.
Parallel runtimes that support Directed Acyclic Graph (DAG)
based execution flows provide more parallel topologies compared
to the MapReduce programming model. Condor DAGMan [36] is
a well-known parallel runtime that supports applications
expressible as DAGs. Many workflow runtimes supports DAG
based execution flows as well. In these runtimes the parallel task
can read from several input sources and produce one or more
outputs. Typically, the granularity of the computations executed in
these tasks is larger than the granularity of the computations
performed in map/reduce functions in MapReduce. For example,
in workflow runtimes a task can be a separate parallel program
running on multiple computers. One can simulate the DAGs
using MapReduce by orchestrating multiple MapReduce
computations. In this regard, Twister will support it better due to
its capabilities to send input data directly from the main program

816

to map/reduce tasks and collect the reduce outputs back to the
main program.
Microsoft Dryad[2] also uses a DAG based execution model in its
distributed execution engine. The task granularity in vertices in
Dryad is more similar to the task granularity of map/reduce in
MapReduce and hence the authors call it a superset of
MapReduce. Extending the Twister runtime to execute more
general user defined functions and DAG based execution flows is
an interesting future work. However, programming such a runtime
is not straightforward and that could be the very reason why
Microsoft introduced DryadLINQ.
DryadLINQ provides a LINQ [37] based programming API for
Dryad and hence it is more suitable for applications that process
structured data. Performing computations that involve legacy
applications or scripts using DryadLINQ is not so straightforward.
DryadLINQ also supports “loop unrolling” a feature that can be
used to create aggregated execution graphs combing a few
iterations of iterative computations. The number of iterations that
can be unrolled depends on the application and the available
memory in the machine. Typically it is only a few iterations.
Therefore, as we have shown in our previous paper[3] it does not
reduce the overhead of the programming model for iterative
applications. Iterative applications we have tested perform up to
10,000 iterations even in our initial modest size problems. They
benefit greatly from the long running map/reduce computation
tasks in Twister. Furthermore, DryadLINQ also uses file based
communication mechanism to transfer data incurring higher
overheads.
Swift [38] is a scripting language and an execution and
management runtime for developing parallel applications with the
added support for defining typed data products via schemas. Its
main focus is expressing computations with simple parallel
structures that are coupled with data partitions more easily and
scheduling those using Grid/Cluster infrastructures. Once a data
partition is available one can easily uses MapReduce to schedule a
“map-only” operation (Twister also support this) to process them
as a many task computation without using the full MapReduce
cycle. Swift also support iterative execution of parallel tasks, but
does not provide optimizations such as long running tasks or
faster data transfers as in Twister.
There is a rich set of future research topics examining additional
features for Twister based on lessons from the other projects
discussed in this section.

7. CONCLUSIONS AND FUTURE WORK
In this paper we discussed our experience in designing and
implementing Twister - a distributed in-memory MapReduce
runtime optimized for iterative MapReduce computations. We
have discussed the extended programming model of Twister and
its architecture comparing them with the typical MapReduce and
its current architectures showing how Twister extends the envelop
of MapReduce to more classes of applications. We have also
presented the results of a set of applications with voluminous data
sets. Some of the benchmarks performed with Twister use a 1632
CPU core cluster. The results, including some of the complex
iterative applications such as MDS, indicate that Twister performs
and scales well for many iterative MapReduce computations
We plan to extend our future research in three areas; (i) research
on different communication infrastructures that can be used with
Twister and identify ways to reduce the load on messaging
infrastructure, (ii) explore the possible distributed file systems that
can be incorporated with Twister to provide better data handling

capabilities and better fault tolerance while retaining most of the
efficiencies we have in Twister intact, and (iii) extending the
programming model further to support more classes of
applications. With the above enhancements, Twister will provide
a valuable tool for MapReduce that supports data-intensive
disciplines such as physics, chemistry and the medical and life
sciences as well.

8. REFERENCES

[1] J. Dean and S. Ghemawat, "MapReduce: simplified data
processing on large clusters," Commun. ACM, vol. 51, pp.
107-113, 2008.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
"Dryad: distributed data-parallel programs from sequential
building blocks," presented at the Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, Lisbon, Portugal, 2007.

[3] J. Ekanayake, A. Balkir, T. Gunarathne, G. Fox, C. Poulain,
N. Araujo, and R. Barga, "DryadLINQ for Scientific
Analyses," presented at the 5th IEEE International
Conference on e-Science, Oxford UK, 2009.

[4] J. Ekanayake, S. Pallickara, and G. Fox, "MapReduce for
Data Intensive Scientific Analyses," presented at the
Proceedings of the 2008 Fourth IEEE International
Conference on eScience, 2008.

[5] J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, and G. Fox,
"High Performance Parallel Computing with Clouds and
Cloud Technologies," in Cloud Computing and Software
Services: Theory and Techniques, ed: CRC Press (Taylor and
Francis).

[6] G. Fox, S.-H. Bae, J. Ekanayake, X. Qiu, and H. Yuan,
"Parallel Data Mining from Multicore to Cloudy Grids,"
presented at the International Advanced Research Workshop
on High Performance Computing and Grids (HPC2008),
Cetraro, Italy, 2008.

[7] MPI (Message Passing Interface). Available: http://www-
unix.mcs.anl.gov/mpi/

[8] PVM (Parallel Virtual Machine). Available:
http://www.csm.ornl.gov/pvm/

[9] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y.
Ng, and K. Olukotun, "Map-Reduce for Machine Learning
on Multicore," in NIPS, ed: MIT Press, 2006, pp. 281-288.

[10] Apache Hadoop. Available: http://hadoop.apache.org/
[11] Y. Gu and R. L. Grossman, "Sector and Sphere: the design

and implementation of a high-performance data cloud,"
Philosophical transactions. Series A, Mathematical, physical,
and engineering sciences, vol. 367, pp. 2429-2445, 2009.

[12] Twister:A Runtime for Iterative MapReduce. Available:
http://www.iterativemapreduce.org/

[13] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and C. J., "DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-
Level Language," in Symposium on Operating System Design
and Implementation (OSDI), 2008.

[14] Disco project. Available: http://discoproject.org/
[15] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file

system," SIGOPS Oper. Syst. Rev., vol. 37, pp. 29-43, 2003.
[16] J. B. MacQueen, "Some Methods for Classification and

Analysis of MultiVariate Observations," in Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and
Probability. vol. 1, L. M. L. Cam and J. Neyman, Eds., ed:
University of California Press, 1967.

817

http://www-unix.mcs.anl.gov/mpi/�
http://www-unix.mcs.anl.gov/mpi/�
http://www.csm.ornl.gov/pvm/�
http://hadoop.apache.org/�
http://www.iterativemapreduce.org/�
http://discoproject.org/�

[17] K. Rose, E. Gurewwitz, and G. Fox, "A deterministic
annealing approach to clustering," Pattern Recogn. Lett., vol.
11, pp. 589-594, 1990.

[18] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Available:
http://infolab.stanford.edu/~backrub/google.html

[19] J. de Leeuw, "Applications of convex analysis to
multidimensional scaling," Recent Developments in
Statistics, pp. 133-145, 1977.

[20] S. Pallickara and G. Fox, "NaradaBrokering: A Distributed
Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids," presented at the Middleware
2003, 2003.

[21] ActiveMQ. Available: http://activemq.apache.org/
[22] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and

D. Thain, "All-Pairs: An Abstraction for Data Intensive
Computing on Campus Grids," in IEEE Transactions on
Parallel and Distributed Systems, 2010, pp. 33-46.

[23] O. Gotoh, "An improved algorithm for matching biological
sequences," Journal of Molecular Biology vol. 162, pp. 705-
708, 1982.

[24] Source Code. Smith Waterman Software. Available:
http://jaligner.sourceforge.net/

[25] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S.-H. Bae,
Y. Ruan, S. Ekanayake, S. Wu, S. Beason, G. Fox, M. Rho,
and H. Tang, "Data Intensive Computing for
Bioinformatics," in Data Intensive Distributed Computing,
ed: IGI Publishers, 2010.

[26] A. F. A. Smit, R. Hubley, and P. Green. (2004,
Repeatmasker. Available: http://www.repeatmasker.org

[27] J. Jurka, "Repbase Update:a database and an electronic
journal of repetitive elements," Trends in Genetics, vol. 6,
pp. 418-420, 2000.

[28] J. Kruskal, "Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis," Psychometrika,
vol. 29, pp. 1-27, 1964.

[29] Y. Takane, Young, F. W., & de Leeuw, J., "Nonmetric
individual differences multidimensional scaling: an
alternating least squares method with optimal scaling
features," Psychometrika, vol. 42, pp. 7-67, 1977.

[30] I. Borg, & Groenen, P. J., Modern Multidimensional Scaling:
Theory and Applications: Springer, 2005.

[31] Y. Zhu, S. Ye, and X. Li, "Distributed PageRank
computation based on iterative aggregation-disaggregation
methods," presented at the Proceedings of the 14th ACM
international conference on Information and knowledge
management, Bremen, Germany, 2005.

[32] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub,
"Exploiting the Block Structure of the Web for Computing
PageRank," Stanford InfoLab, Technical Report2003.

[33] The Power Method. Available:
http://en.wikipedia.org/wiki/Pagerank#Power_Method

[34] (2009, The ClueWeb09 Dataset. Available:
http://boston.lti.cs.cmu.edu/Data/clueweb09/

[35] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.
Kozyrakis, "Evaluating MapReduce for multi-core and
multiprocessor systems," in 13th International Symposium on
High-Performance Computer Architecture, 2007, pp. 13-24.

[36] C. Team. (2009, Condor DAGMan. Available:
http://www.cs.wisc.edu/condor/dagman/.

[37] LINQ Language-Integrated Query. Available:
http://msdn.microsoft.com/en-
us/netframework/aa904594.aspx

[38] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. v. Laszewski,
V. Nefedova, I. Raicu, T. Stef-Praun, and M. Wilde, "Swift:
Fast, Reliable, Loosely Coupled Parallel Computation," in
IEEE Congress on Services, 2007, pp. 199-206.

818

http://infolab.stanford.edu/~backrub/google.html�
http://activemq.apache.org/�
http://jaligner.sourceforge.net/�
http://www.repeatmasker.org/�
http://en.wikipedia.org/wiki/Pagerank#Power_Method�
http://boston.lti.cs.cmu.edu/Data/clueweb09/�
http://www.cs.wisc.edu/condor/dagman/�
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx�
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx�

